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1. INTRODUCTION

Data fitting and solving differential and integral equations on the sphere
are areas of growing interest with applications to physical geodesy, poten-
tial theory, oceanography, and meteorology [6, 10]. As more and more
satellites are being launched into space, the acquisition of global data is
becoming more important and more widespread, and the demand for
spherical data processing and solving problems of a global nature is
increasing.

In this paper we investigate the solution of pseudodifferential equations
on spheres by collocation at scattered data points with zonal kernels.
Denoting by Sm−1 the unit sphere in Rm(m \ 2), a function o: Sm−1×Sm−1

Q R is called a zonal kernel if it has the form

o(p, q)=ko(p · q),



where ko is a univariate function defined on [−1, 1], called the shape
function, and p ·q is the Euclidean dot product of points p, q ¥ Sm−1. Since
for a fixed p the value of o(p, q) depends only on the geodesic distance of p
from q, the function o(p, · ) is radially symmetric with respect to the
point p. For this reason o(p, · ) is often called a spherical radial basis
function.

Differential or, more generally, pseudodifferential equations arise in
many areas of earth sciences (see, e.g., [10, 25] for many important
examples). Given a pseudodifferential operator L and a spherical function f,
our objective in this paper is to discuss approximate solutions of the
equation

Lu=f.

In order that this equation may be uniquely solvable, side conditions will
be imposed of the form

cu=dc, c ¥ C,

where C is a collection of linear functionals and dc ¥ R are given ‘‘data
values.’’ The particular method we study here seeks an approximation of
the solution u in the form

su=s0+C
q ¥ Q
cqLqo( · , q), cq ¥ R, (1)

where Q is a finite set of points in Sm−1, called the collocation points, and s0
is a linear combination of spherical harmonics that are annihilated by L.
Throughout, we follow the convention that Lqo( · , q) means that L is
applied to o( · , q) as a function of q. Note that in (1) we abused the
notation slightly in that, strictly speaking, Lqo( · , q)=Lpo( · , p)|p=q. To
determine su, that is, to find s0 and the coefficients cq, q ¥ Q, we can solve
the linear system of equations

Lsu(p)=f(p), p ¥ Q,

csu=dc, c ¥ C.
(2)

We consider su of the form (1) to ensure that the linear system (2) will be
positive semi-definite (see also Remark 17).

The above collocation method is an example of the emerging meshless
techniques for solving differential equations, since it only requires the
information about the location of the points Q, which need not be inter-
connected. Meshless methods are a challenging topic with the potential to
become a feasible alternative to finite element methods [27].
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In this paper we will furnish convergence order estimates for the collo-
cation problem explicitly in terms of a mesh norm h that measures the
density of the points Q. The crux of our approach is to transform the col-
location problem to a Lagrange interpolation problem. In particular,
defining a new kernel

oL(p, q) :=LpLqo(p, q),

the first set of equations in (2) is equivalent to finding a function of the
form

sf :=C
q ¥ Q
cqoL( · , q),

satisfying the interpolation conditions

sf(p)=f(p), p ¥ Q.

There are many known error estimates for this type of Lagrange inter-
polation in the literature, including [9, 12, 14, 26]. For our purposes,
the approach taken in [14] will prove most useful. In addition, the work
presented here also draws on some ideas from other recent sources on
interpolation in Rm [18, 23], solving differential equations in Rm using col-
location [4, 7, 8], and spherical interpolation and approximation [5, 10,
17]. The system of Eqs. (2) can be interpreted as a generalized Hermite
interpolation problem. Generalized Hermite interpolation on spheres and
on other differentiable manifolds has been studied in [1, 2, 22].

The analysis of the error u−su will be done in Sobolev spaces and in
certain Hilbert spaces called native spaces. Our final estimates, formulated
in Theorem 16, will be of the form

||u−su || [ C(h) ||f||,

where C(h) is a function converging to zero as hQ 0, whose rate of con-
vergence depends on the smoothness of the zonal kernel o and the order of
the pseudodifferential operator L, and where the norms || · || are taken in
appropriate function spaces.

The layout of the paper is as follows. In Section 2 we introduce zonal
kernels and their associated native spaces. Section 3 describes an abstract
interpolation problem that will be useful in formulating the collocation
problem in Section 4. The analysis of the convergence order of the colloca-
tion method will be carried out in Sections 5 and 6.

In the remainder of this section we recall some standard definitions and
tools needed for analysis of spherical functions. For a more detailed
account, the reader is referred to [21].
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Let Dg be the Laplace–Beltrami operator on Sm−1, which can be defined
for all sufficiently smooth functions u on Sm−1 as

Dgu(p) :=Dv(p), p ¥ Sm−1,

where D is the Laplacian in Rm and v is the homogeneous extension of
degree zero of u to Rm, or v(p) :=u(p/||p||), p ¥ Rm0{0}. The eigenvalues
for the eigenvalue problem

Dgu+lu=0

are lk=k(k+m−2), where k is a nonnegative integer. The space of
spherical harmonics of degree k consists of all infinitely differentiable
functions that are eigenfunctions of Dg corresponding to lk. This space has
dimension N(k), where

N(0)=1, and N(k)=
2k+m−2
k
1k+m−3
k−1
2 , k > 0.

Note that N(k)=O(km−2). Given an orthonormal basis {Ykl : l=1, ...,
N(k)} for the space of spherical harmonics of degree k, the collection

{Ykl : l=1, ..., N(k), k \ 0}

forms an orthonormal basis for L2 :=L2(Sm−1). According to the well-
known Addition Theorem,

C
N(k)

l=1
Ykl(p) Ykl(q)=w−1N(k) Pk(p · q), p, q ¥ Sm−1, k \ 0, (3)

where Pk is the Legendre polynomial of degree k in m dimensions,
normalized such that Pk(1)=1, and w is the surface area of Sm−1. Legendre
polynomials satisfy the inequality

|Pk(t)| [ 1, t ¥ [−1, 1], k \ 0. (4)

Spherical harmonics can be used to give a Fourier analysis on the sphere.
In particular, every function u ¥ L2 has an associated Fourier series

u=C
.

k=0
C
N(k)

l=1
ûklYkl,

where the equality holds inL2. The Fourier coefficients ûkl ¥ Rare obtained via

ûkl=F
Sm−1
u(p) Ykl(p) dS(p),

where dS represents a surface element on Sm−1.
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2. NATIVE SPACES

In this section we introduce certain classes of zonal kernels on
Sm−1×Sm−1 and their associated native spaces. These kernels will form the
foundation for the generalized Hermite interpolation discussed in the
subsequent section.

Let o be a zonal kernel with shape function ko : [−1, 1]Q R. All kernels
in this paper will be such that their shape function ko has a Legendre
expansion of the form

ko(t)=C
.

k=0
bk(ko) Pk(t), t ¥ [−1, 1],

where the Legendre coefficients bk(ko) satisfy bk(ko) \ 0 and

C
.

k=0
bk(ko) <.. (5)

By (4), these conditions guarantee that the above Legendre expansion
converges uniformly and hence that o is continuous. Another consequence
is that o is positive definite, which means that the matrix (o(p, q))p, q ¥ Q is
positive semi-definite for every finite collection of points Q … Sm−1. If in
fact the coefficients bk(ko) are all positive, then the above-mentioned
matrix is positive definite, in which case o is called strictly positive definite.
This is an important property since it implies, among other things, that the
Lagrange interpolation problem

C
q ¥ Q
cqo(p, q)=dp, p ¥ Q,

is uniquely solvable for the coefficients cq, for an arbitrary set Q of distinct
points and arbitrary data values dp ¥ R. Positive definite functions on the
sphere have received a lot of attention recently. For more details, see the
survey [6] and the references therein.

A series expansion foro(p, q) can be obtained via the Addition Theorem (3),

o(p, q)=ko(p · q)=C
.

k=0

wbk(ko)
N(k)

C
N(k)

l=1
Ykl(p) Ykl(q), (6)

or

o(p, q)=C
.

k=0
ak(o) C

N(k)

l=1
Ykl(p) Ykl(q), (7)
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where

ak(o) :=
wbk(ko)
N(k)

\ 0. (8)

For convenience and conciseness we continue to use both notations ak(o)
and bk(ko), even though by (8), one of the two symbols could be removed.

There is a useful space associated with the kernel o.

Definition 1. The native space Ho associated with the kernel o is the
space of all functions u ¥ L2, for which ûkl=0 whenever ak(o)=0, and
such that

||u||o :=1 C
.

k=0
ak(o) ] 0

1
ak(o)

C
N(k)

l=1
û2kl 2

1
2

<..

The Sobolev spaces H s on the sphere (see Section 6) are a special
instance of the native spaces, obtained by setting ak(o)=(1+lk)−s, s ¥ R.
The space Ho is a Hilbert space, with associated inner product

Ou, vPo= C
.

k=0
ak(o) ] 0

1
ak(o)

C
N(k)

l=1
ûkl v̂kl.

The following imbedding theorem implies that Ho is a reproducing kernel
Hilbert space.

Proposition 2. The Hilbert spaceHo is continuously imbedded in C(Sm−1).

Proof. We need to prove that

sup
p ¥ Sm−1

|u(p)| [ C ||u||o, u ¥Ho,

for some constant C that is independent of u. For every p ¥ Sm−1, by the
Cauchy–Schwarz inequality, we have

|u(p)| [ C
.

k=0
C
N(k)

l=1
|ûklYkl(p)|

[ 1 C
.

k=0
ak(o) ] 0

1
ak(o)

C
N(k)

l=1
û2kl 2

1
2 1 C

.

k=0
ak(o) C

N(k)

l=1
Y2kl(p)2

1
2

=C ||u||o,

with C :=(w−1;.

k=0 ak(o) N(k))
1/2=(;.

k=0 bk(ko))
1/2 <.. Similarly, it is

possible to see that for p, q ¥ Sm−1 and u ¥Ho,

|u(p)−u(q)| [ ||u||o (|o(p, p)−o(p, q)|+|o(q, q)−o(q, p)|)
1
2,

which implies, by the continuity of o, that u is continuous. L
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The dual of the space Ho will be denoted as Hg
o , which is also a Hilbert

space with a corresponding norm || · ||o*. It is not difficult to show that each
l ¥Hg

o can be associated with a real sequence (l̂kl) such that l̂kl=0,
l=1, ..., N(k), for k such that ak(o)=0, and

||l||o*=C
.

k=0
ak(o) C

N(k)

l=1
l̂2kl <..

As a consequence, we have for u ¥Ho and l ¥Hg
o ,

|lu|=: C
.

k=0
C
N(k)

l=1
ûkl l̂kl : [ ||l||o* ||u||o.

Native spaces were introduced by Madych and Nelson in [19, 20] to
study the approximation properties of radial basis functions in Rm. The
spherical analog of native spaces has appeared in several papers [1, 14,
17]. In some sense, they can be viewed as a ‘‘discretized’’ version of the
native spaces in Rm with the Fourier series in place of the standard Fourier
transform.

A few remarks on the above definition of native spaces are in order. The
definition simplifies if we assume that all coefficients ak(o) are positive or,
equivalently, that o is strictly positive definite in the stronger distributional
sense defined in [2]. In fact, this assumption is made in most of the
previously quoted papers. If some of the ak(o) are zero, then Ho becomes
degenerate in that it lacks spherical harmonics of certain frequencies. In
this case Ho is not dense in L2. While in some settings this may be unac-
ceptable, in the context of solving differential equations, degenerate native
spaces arise naturally when dealing with operators, such as Dg, that
annihilate a certain number of spherical harmonics.

It will be instructive to briefly motivate the definition of Ho. Frequently,
the kernel o is used to define functions of the form

C
m ¥ L

cmmqo( · , q), cm ¥ R, (9)

where L is a finite set of functionals. For example, m ¥ L can be an evalua-
tion functional, namely mqo( · , q)=o( · , q), q ¥ Sm−1, or a point-evaluation
of a pseudodifferential operator, considered later in the paper. A question
of fundamental importance is whether one can characterize functions that
can be approximated, in a prescribed sense, by linear combinations of the
form (9). It turns out that such functions are necessarily elements of Ho if
we let L be a subset of the dual space Hg

o . To see this, first note that a
linear combination of the form (9) equals lqo( · , q), where l :=;m ¥ L cmm is
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also an element of Hg
o . We now claim that lqo( · , q) is well defined and

belongs to Ho. To do this, we must verify that o( · , q) ¥Ho, for each
fixed q. This follows from

||o( · , q)||2o=o(q, q),

which is finite by the continuity of o. To see that lqo( · , q) ¥Ho, observe
that

||lqo( · , q)||2o=C
.

k=0
ak(o) C

N(k)

l=1
(lYkl)2=C

.

k=0
ak(o) C

N(k)

l=1
l̂2kl=||l||

2
o* <.

since l ¥Hg
o . In fact, the equality ||lqo( · , q)||o=||l||o* means that the space

of linear combinations of the form (9), where L ranges over finite subsets
of Hg

o , is identical to the space Ho. In applications we usually replace Hg
o

with a subspace of functionals of particular type (e.g., point-evaluation
functionals) that is total for Ho. As a result, the space of functions of the
form (9) will be dense in Ho. In other words, if a function u is to be
approximated arbitrarily well by linear combinations of the form (9), then u
has to be an element of Ho.

3. GENERALIZED HERMITE INTERPOLATION

Before considering differential equations on spheres, we discuss an
abstract framework for generalized Hermite interpolation. For a finite
collection of functionals L …Hg

o , let

SL, o :=span{lqo( · , q): l ¥ L}.

We are interested in the following

Problem 3. Let u ¥Ho. Find an element su, L, o ¥ SL, o such that

lsu, L, o=lu, l ¥ L. (10)

This problem is not well posed unless the expression lsu, L, o is meaningful,
which means that lplqo(p, q) must be well defined for all l ¥ L. However,
as noted in the previous section, lqo( · , q) is an element of Ho and thus
lplqo(p, q) is indeed well defined. Moreover, SL, o is a linear subspace of
Ho and therefore conditions (10) make sense.

Later, we shall need a formula for mpnqo(p, q), where m, n ¥Hg
o . The

expansion (7) for o yields

nqo( · , q)=C
.

k=0
ak(o) C

N(k)

l=1
Ykl( · )(nYkl),
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where the equality holds in Ho. Note that the interchange of n and the
summation is justified by the fact that n ¥Hg

o and that for any fixed q, we
have o( · , q) ¥Ho. An immediate consequence of this and the fact that
nqo( · , q) ¥Ho is that for all m, n ¥Hg

o ,

mpnqo(p, q)=C
.

k=0
ak(o) C

N(k)

l=1
(mYkl)(nYkl). (11)

Next we show that Problem 3 has a unique solution. Moreover, this
solution is the best approximation to u from SL, o in the topology of the
native space Ho.

Proposition 4. Let u ¥Ho and let L …Hg
o be a finite set. Then

Problem 3 has a unique solution su, L, o, which is such that

||u−v||2o=||u−su, L, o ||
2
o+||v−su, L, o ||

2
o,

for every v ¥ SL, o. In particular, ||u−su, L, o ||o=infv ¥ SL, o ||u−v||o.

Proof. We only prove the existence and uniqueness of the function
su, L, o. The remaining part of the proposition is a standard variational result
for Hilbert spaces, proved in a similar framework in [17].

Without loss of generality we can assume that the functionals in L are
linearly independent. For it is easily seen that if this is not the case, then we
can discard all redundant functionals in L without changing the space SL, o
and without altering the nature of conditions (10). With this assumption,
Problem 3 gives rise to an invertible linear system of equations. To prove
this, consider the matrix corresponding to the linear system (10). We
show that this matrix is positive definite. Using (11), the quadratic form
associated with the matrix is

C
m, n ¥ L

cmcnmpnqo(p, q)=lplqo(p, q)=C
.

k=0
ak(o) C

N(k)

l=1
(lYkl)2,

where l :=;m ¥ L cmm, cm ¥ R. Since the coefficients ak(o) are nonnegative,
the quadratic form vanishes if and only if l annihilates the spherical
harmonics Ykl, l=1, ..., N(k), corresponding to ak(o) ] 0. Clearly the
linear span of these spherical harmonics is dense in Ho and hence l=0. By
the linear independence of the functionals L (on Ho), the coefficients cm are
identically zero. Consequently, the linear system of equations is uniquely
solvable. L
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To derive error estimates for the collocation method, we start with a
version of a classical inequality [13]. This inequality uses the notion of a
power function Po, L(m) of a linear functional m ¥Hg

o , associated with a
zonal kernel o and a finite set of linear functionals L. It is defined as

Po, L(m) := inf
l ¥ span L

||m−l||o*.

Lemma 5. Suppose that v ¥Ho is such that lv=0, for all l ¥ L, and let
m ¥Hg

o . Then

|mv| [ Po, L(m) ||v||o.

Proof. For any m ¥Hg
o we have by definition

||m||o*=sup
v ¥Ho
v ] 0

|mv|
||v||o
.

If l ¥ spanL, then |mv|=|(m−l) v| [ ||m−l||o* ||v||o. Taking the infimum
over all such l completes the proof. L

Since the solution su, L, o of Problem 3 satisfies the collocation conditions
(10), a corollary of the previous lemma is

|m(u−su, L, o)| [ Po, L(m) ||u−su, L, o ||o, m ¥Hg
o . (12)

Thus this inequality isolates the problem of approximating the linear func-
tional m by the finite set of linear functionals L, from the problem of how
well the solution u can be approximated by a function in SL, o.

The majority of study of the approximation properties of zonal kernels
on Sm−1 has concentrated on just one of the factors in inequality (12)—the
power function. In this paper we will investigate both factors, and under
favorable conditions we will be able to collect approximation order from
both of them to effectively double the approximation order. This idea first
appears in [23] for Rm.

The framework for generalized Hermite interpolation that we presented
in this section is not the only approach. Another alternative is to use
Sobolev spaces as in [2].
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4. THE COLLOCATION PROBLEM FOR PSEUDODIFFERENTIAL
EQUATIONS

Let (L N(k))k \ 0 be a polynomially bounded sequence of real numbers
and suppose that L is an operator that assigns to any u ¥ L2 the expression

Lu=C
.

k=0
C
N(k)

l=1
L N(k) ûklYkl. (13)

In particular,

LYkl=L N(k) Ykl,

for all l=1, ..., N(k), k \ 0. Note that Lu is an element of DŒ, the space of
distributions on Sm−1, in the sense that OLu, jP :=;.

k=0 ;N(k)
l=1 L

N(k)
ûklĵkl, j ¥ C.(Sm−1), defines a continuous linear functional on C.(Sm−1).
The operator L is called a pseudodifferential operator and the sequence
(L N(k))k \ 0 is referred to as the spherical symbol of L. A pseudodifferential
operator L is said to be of order t if there exist positive constants C1 and C2
such that

C1(1+lk) t/2 [ |L N(k)| [ C2(1+lk) t/2, (14)

for all k such that L N(k) ] 0. This definition of pseudodifferential operators
appeared essentially in [10] (see also [25]) and was motivated by the
classical theory of pseudodifferential operators in Rm [3]. Examples are the
Laplace–Beltrami operator Dg, a pseudodifferential operator of order two,
for which L N(k)=−lk, and the operator

L=−Dg+1m−2
2
22,

with spherical symbol

L N(k)=1k+m−2
2
22.

Moreover, boundary value problems of physical geodesy in R3 can be
typically reformulated as pseudodifferential equations on S2 [25]. Many
other examples are given in [10].

To investigate the collocation problem described in Section 1, for a
pseudodifferential operator L and a kernel o, let

oL(p, q) :=LpLqo(p, q).
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As mentioned earlier, this kernel will play an important role in our analy-
sis. To be able to apply the results of the previous section to oL, we need to
verify that under appropriate conditions this kernel is well defined and that
its properties are similar to the properties of the original kernel o.

Lemma 6. Let o be a zonal kernel satisfying (5) and

C
.

k=0
L N(k)2 bk(ko) <.. (15)

Then oL is a continuous zonal kernel with coefficients ak(oL)=ak(o)
L N(k)2 \ 0.

Proof. We check that l :=dp p L ¥Hg
o , p ¥ S

m−1, where dp denotes the
functional, defined for a function g as dpg :=g(p). To see this, we note that
if u ¥Ho, then by the Cauchy–Schwarz inequality,

|Lu(p)| [ C
.

k=0
C
N(k)

l=1
|L N(k) ûklYkl(p)|

[ 1 C
.

k=0
ak(o) L N(k)2 C

N(k)

l=1
Y2kl(p)2

1
2 1 C

.

k=0
ak(o) ] 0

1
ak(o)

C
N(k)

l=1
û2kl 2

1
2

=C ||u||o,

with C :=(;.

k=0 L
N(k)2 bk(ko))

1
2 <.. Hence, by the remarks after

Problem 3 we know that lqo( · , q)=Lqo( · , q) ¥Ho and that lplqo(p, q)=
LpLqo(p, q) is well defined. Moreover, by (13) the new kernel oL(p, q)
takes the form

oL(p, q)=C
.

k=0
ak(o) L N(k)2 C

N(k)

l=1
Ykl(p) Ykl(q).

This shows that oL is zonal and that ak(oL)=ak(o) L N(k)2 \ 0. The
assumption (15), together with (4), implies that oL is continuous. L

It follows from the previous lemma that there is a well-defined native
space HoL associated with oL. It is not difficult to see that L maps the space
Ho onto HoL and hence the pseudodifferential equation

Lu=f, f ¥HoL ,

is solvable in Ho. However, the solution may not be unique if L is not
invertible. In Section 6 we will impose additional conditions on u that will
determine a unique solution.
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We are now ready to formulate the collocation problem for solving
pseudodifferential equations more precisely. This will be a special case of
Problem 3, in which we restrict ourselves to a special class of functionals L,
namely point-evaluations of the operator L.

Problem 7. Let Q be a finite set of distinct collocation points in Sm−1

and let

L={dq p L:Ho Q R, q ¥ Q}.

Also, let f ¥HoL and u ¥Ho be such that

Lu=f. (16)

Find a function su, L, o ¥ SL, o satisfying the collocation conditions

lsu, L, o=lu, l ¥ L,

or, equivalently,

Lsu, L, o(q)=f(q), q ¥ Q.

5. ANALYSIS OF APPROXIMATION ORDER

Proposition 4, applied to oL instead of o, combined with Lemma 6,
implies that Problem 7 has a unique solution su, L, o. In this and the next
section we will be interested in how well this function approximates the
exact solution of the pseudodifferential Eq. (16). First we will establish
bounds on the expression Lu−Lsu, L, o=f−Lsu, L, o. Estimates for the error
u−su, L, o will be obtained in the next section. The estimates will be given
explicitly in terms of a mesh norm h that measures the density of the
collocation points Q, defined as

h := sup
p ¥ Sm−1

min
q ¥ Q
d(p, q),

where d(p, q) is the geodesic distance of p, q ¥ Sm−1.
We will adapt a technique used in [8] for Rm to the sphere Sm−1. This

technique reduces the problem of finding convergence order results for
Problem 7 to establishing the order of convergence for a particular
Lagrange interpolation problem. Consider the pointwise error

|L(u−su, L, o)(p)|
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at an arbitrary point p ¥ Sm−1. As we know, su, L, o is the best approximation
(in the native space Ho) to u from the space SL, o. We now claim that Lsu, L, o
is the best approximation in HoL to f from SdQ, oL , where dQ :={dq: q ¥ Q}.
Note that dQ …Hg

oL
, which follows from the fact that by (15) and by

Proposition 2 (applied to oL instead of o), HoL is continuously imbedded in
C(Sm−1).

Lemma 8. Lsu, L, o=sf, dQ, oL .

Proof. The proof is done in a similar way to the case of Rm (see
[8, Theorem 2.8]). By definition, su, L, o is such that dq(Lsu, L, o)=dq(Lu)=
f(q), q ¥ Q. Moreover, Lsu, L, o ¥ SdQ, oL . On the other hand, sf, dQ, oL ¥ SdQ, oL
is the unique function satisfying dq(sf, dQ, oL )=f(q), q ¥ Q. Hence Lsu, L, o=
sf, dQ, oL . L

Combining Lemma 8 with inequality (12) leads to

|L(u−su, L, o)(p)|=|dp(f−sf, dQ, oL )| [ PoL, dQ (dp) ||f−sf, dQ, oL ||oL , (17)

for every p ¥ Sm−1. To bound the right-hand side of (17), we first need an
estimate for the power function PoL, dQ (dp). To do this, we modify an
argument given in [14] for Lagrange interpolation on the sphere. The
following result from [14, Proposition 2] will be crucial.

Lemma 9. Let p ¥ Sm−1 and let Q have mesh norm h [ 1/(2K), for some
K ¥N. Then there exist numbers cq ¥ R, q ¥ Q, such that

1dp− C
q ¥ Q
cqdq 2 Ykl=0,

for all l=1, ..., N(k), k=0, ..., K, and such that

C
q ¥ Q
|cq | [ 2.

It is now possible to estimate the power function PoL, dQ (dp). From now
on we will assume that the integer K is always such that h [ 1/(2K) holds.

Proposition 10. Let oL be a zonal kernel with coefficients satisfying (5)
and (15). Then

PoL, dQ (dp) [ 3 1 C
k > K
bk(koL )2

1
2

,

for all p ¥ Sm−1.
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Proof. Let p ¥ Sm−1 be fixed. Also, let cq, q ¥ Q, be the numbers from
Lemma 9, and cp :=−1. We have

PoL, dQ (dp) [ sup
v ¥HoL
||v||oL=1

: 1dp− C
q ¥ Q
cqdq) v2 :

[ sup
v ¥HoL
||v||oL=1

C
q ¥ Q 2 {p}

|cq | : C
k > K

C
N(k)

l=1
v̂klYkl(q) :

[ sup
v ¥HoL
||v||oL=1

1 C
q ¥ Q 2 {p}

|cq |2 max
q ¥ Q 2 {p}

: C
k > K

C
N(k)

l=1
v̂klYkl(q) :

[ 3 sup
v ¥HoL
||v||oL=1

max
q ¥ Q 2 {p}

: C
k > K

C
N(k)

l=1
v̂klYkl(q) : .

To evaluate the maximum value above, we apply Cauchy–Schwarz
inequality to obtain

1 C
k > K

C
N(k)

l=1
v̂klYkl(q)2

2

[ 1 C
k > K

ak(oL) ] 0

C
N(k)

l=1

v̂2kl
ak(oL)
21 C

k > K
ak(oL) C

N(k)

l=1
Y2kl(q)2

[ ||v||2oL C
k > K

ak(oL) N(k)
w

=||v||2oL C
k > K
bk(koL ).

Combining the above inequalities concludes the proof. L

Remark 11. A similar result to Proposition 10, albeit for a slightly
larger class of kernels, was proved in [14, Theorem 2], namely that, in our
notation,

PoL, dQ (dp) [ 5(#Q+1)1 C
k > K
bk(koL )2

1
2

,

where #Q is the cardinality of Q. Thus we have improved this result (for
the class of kernels considered here) by removing the factor #Q+1 from
the bound. Moreover, we have done away with the assumption that all
ak(oL) must be positive.

We now turn our attention to the second factor in (17), ||f−sf, dQ, oL ||oL ,
which is a classical error for Lagrange interpolation. By Proposition 4,
a crude bound for this error is

||f−sf, dQ, oL ||oL [ ||f||oL .
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However, if we assume additional smoothness on f, then we can employ an
idea from [23] to get a tighter bound for ||f−sf, dQ, oL ||oL . For a kernel o
with expansion (7) we can define the space

Ho f o :=3v ¥Ho : ||v||o f o :=1 C
.

k=0
ak(o) ] 0

1
a2k(o)

C
N(k)

l=1
v̂2kl 2

1
2

<.4 .

The notation Ho f o, which is suggestive of convolution, is used because it
can be shown that Ho f o is the native space of the kernel o f o defined by

(o f o)(p, q) :=F
Sm−1
o(p, r) o(r, q) dS(r), p, q ¥ Sm−1.

Proposition 12. For all f ¥HoL f oL ,

||f−sf, dQ, oL ||oL [ 3`w ||f||oL f oL
1 C
k > K
bk(koL )2

1
2

.

Proof. Since sf, dQ, oL is the best approximation to f from HoL , we have

||f−sf, dQ, oL ||
2
oL
=Of−sf, dQ, oL , f−sf, dQ, oLPoL=Of, f−sf, dQ, oLPoL .

By the definition of HoL and the Cauchy–Schwarz inequality,

||f−sf, dQ, oL ||
2
oL
=Of, f−sf, dQ, oLPoL

= C
.

k=0
ak(oL) ] 0

C
N(k)

l=1

f̂kl(f̂kl−(ŝf, dQ, oL )kl)
ak(oL)

[ 1 C
.

k=0
ak(oL) ] 0

C
N(k)

l=1

f̂2kl
a2k(oL)
2
1
2 1 C

.

k=0
C
N(k)

l=1
(f̂kl−(ŝf, dQ, oL )kl)

22
1
2

=||f||oL f oL ||f−sf, dQ, oL ||L2 . (18)

By Lemma 5, with m=dp and L=dQ,

|f(p)−sf, dQ, oL (p)| [ PoL, dQ (dp) ||f−sf, dQ, oL ||oL .

Hence, integration with respect to p, along with Proposition 10, yields

||f−sf, dQ, oL ||L2 [ 3`w 1 C
k > K
bk(koL )2

1
2

||f−sf, dQ, oL ||oL . (19)
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Combining inequalities (18) and (19), we have

||f−sf, dQ, oL ||
2
oL

[ 3`w ||f||oL f oL
1 C
k > K
bk(koL )2

1
2

||f−sf, dQ, oL ||oL .

Canceling a factor of ||f−sf, dQ, oL ||oL gives the desired result. L

Proposition 10, together with Proposition 12, yields the main result of
this section.

Theorem 13. In the notation of Problem 7,

|Lu(p)−Lsu, L, o(p)| [ 3 ||f||oL 1 C
k > K
L N(k)2 bk(ko)2

1
2

,

for all p ¥ Sm−1. If in addition f ¥HoL f oL , then

|Lu(p)−Lsu, L, o(p)| [ 3`w ||f||oL f oL C
k > K
L N(k)2 bk(ko).

The above estimates depend implicitly on the mesh norm h since K is a
function of h. In the next section we make this connection explicit by
assuming a certain decay on the coefficients bk(ko), which is related to the
smoothness of o, and on the decay of the spherical symbol L N(k), which
determines the order of the pseudodifferential operator L.

6. EXPLICIT ERROR BOUNDS

In the previous section we derived an error estimate for the approxima-
tion of Lu by Lsu, L, o. However, for practical purposes it is desirable to have
an approximation not just to Lu, but to the solution u. Up to this point u
can be any function in Ho that satisfies Lu=f. Unfortunately, if the
numbers L N(k) are not all nonzero, then such a function may not be
unique. In that case the various solutions may differ at the frequencies k
for which L N(k)=0. In this section we will impose additional conditions
on the function u that will guarantee its uniqueness. Then we prove an
error bound on the distance between u and its approximation su. This dis-
tance will be measured in a Sobolev norm, which is a natural norm in the
setting of solving pseudodifferential equations.

To address the uniqueness of the solution of the equation Lu=f, let us
define the index set

K0(L) :={k: L N(k)=0}
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and the associated set of spherical harmonics

PL :=span{Ykl: l=1, ..., N(k), k ¥K0(L)}.

Let C be a set of continuous linear functionals on Ho that is unisolvent
relative to PL. This means that for every set of data values {dc ¥ R : c ¥ C},
there exists a unique element u0 ¥PL such that cu0=dc, c ¥ C. Since
point-evaluations are continuous on Ho, a possible choice of C is

C={dr: r ¥ R},

where R is a set of distinct points in Sm−1 for which C is unisolvent. In the
sequel we restrict ourselves to pseudodifferential operators for which
K0(L), and hence C, is finite (see Remark 17). This is a reasonable
assumption since K0(L) is finite for the majority of useful operators. For
example, for Dg we have K0(L)={0}.

Let us now return to the question of solvability of the equation Lu=f.

Lemma 14. Let L be a pseudodifferential operator, and let f ¥HoL .
Moreover, let dc ¥ R, c ¥ C, be given. Then there exists a unique solution
u ¥Ho of the equation

Lu=f, (20)

such that

cu=dc, c ¥ C. (21)

Proof. We can decompose the native space Ho as

Ho=PL ÀPcL,

where PcL :={v ¥Ho : v̂kl=0 , k ¥K0(L)} is the complementary space to
PL. Thus every solution u ¥Ho of the system (20)–(21) can be written in
the form

u=u0+ū,

where u0 ¥PL and ū ¥PcL. Observe that (20) is equivalent to Lū=f,
which is uniquely solvable for ū ¥PcL since L:PcL QHoL is invertible. The
inverse of L is determined by the symbol

(L−1) N (k)=31/L
N(k), k ¨K0(L),

0, k ¥K0(L).

Equations (21) can now be written as cu0=dc− cū, c ¥ C, which can be
uniquely solved (for u0) by the unisolvency of C. L
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We now recall some useful facts about spherical analogs of Sobolev
spaces [16]. These are defined as

H s :=H s(Sm−1) :=3v ¥DŒ : ||v||s :=1 C
.

k=0
(1+lk) s C

N(k)

l=1
v̂2kl 2

1
2

<.4 .

If v ¥H s and s > t, then clearly ||v||t [ ||v||s. A classical result about Sobolev
spaces is the Sobolev Imbedding Theorem [11, p. 35], which asserts that
whenever s > n+(m−1)/2, for some n \ 0, then H s is continuously
imbedded in Cn(Sm−1).

We note that every pseudodifferential operator L of order t maps H s to
H s− t, s ¥ R. In addition, L has the following property:

Proposition 15. Let L be a pseudodifferential operator of order t, and
let C be a unisolvent set of continuous linear functionals on H s relative to PL.
Then there exists a constant CL such that for every v ¥H s satisfying cv=0,
c ¥ C,

||v||s [ CL ||Lv||s− t.

Proof. Suppose that the assertion of the theorem is not true. Then there
exists a sequence (v i) ¥H s such that cv i=0, c ¥ C, and

1=||v i||s > i ||Lv i||s− t.

This means that limiQ. ||Lv i||s− t=0, or equivalently,

lim
iQ.

C
.

k=0
C
N(k)

l=1
(v̂ ikl)

2 L N(k)2 (1+lk) s− t=0. (22)

Let v i=v i0+v̄
i, where v i0 is the PL-component of v i. Clearly, 1=||v i||2s=

||v i0 ||
2
s+||v̄

i||2s , and therefore

||v i0 ||s [ 1. (23)

On the other hand, by (14) there exists a positive constant C1 such that

||v i0 ||
2
s=1−||v̄

i||2s \ 1−
1
C1

C
k ¨K0(L)

C
N(k)

l=1
(1+lk) s− t L N(k)2 (v̂ ikl)

2.

This, together with (22) and (23), yields

lim
iQ.
||v i0 ||s=1, (24)
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and limiQ. ||v̄ i||s=0. It follows by the continuity of the linear functionals
in C that limiQ. cv̄ i=0, c ¥ C. Combining this with the fact that cv i=0,
leads to

lim
iQ.
cv i0=0, c ¥ C. (25)

The unisolvency of C implies that we can define a norm on PL by

||w||C :=C
c ¥ C

|cw|, w ¥PL.

Moreover, by the finite dimensionality of PL, this norm is equivalent to all
other norms on this space. In particular, by (25), limiQ. ||v

i
0 ||C=0, whence

lim
iQ.
||v i0 ||s=0.

This is in direct contradiction to (24). L

With the above preparatory results, we now revisit the issue of solving
pseudodifferential equations by collocation. Motivated by Lemma 14,
consider the system of equations (20)–(21). The proof of this lemma
suggests that we think of u as a sum of the form u=u0+ū, where u0 is the
PL-component of u. We then approximate u in two stages. In the first
stage, an approximation sū, L, o ¥ SL, o of the function ū is obtained by collo-
cation. In the second stage, we approximate u0 by a polynomial s0 ¥PL,
determined by solving a Lagrange interpolation problem. Specifically,
given the numbers dc, c ¥ C, the approximation

su :=s0+sū, L, o (26)

of u is obtained by solving the linear system

Lsu(q)=f(q), q ¥ Q,

csu=dc, c ¥ C.
(27)

Note that the two types of equations can be decoupled. Namely, since L
annihilates s0, the first set of equations is equivalent to

Lsū, L, o(q)=f(q), q ¥ Q. (28)

After solving for sū, L, o, we can proceed with the second set of equations
and solve for s0. These can be written as

cs0=dc− csū, L, o, c ¥ C.
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Notice that in order to determine su it is not necessary to compute the
decomposition u=u0+ū explicitly.

We are now ready to state the result alluded to earlier asserting that the
error of approximation of the collocation method can be bounded by an
expression that depends explicitly on the mesh size h of the set of colloca-
tion points. The next theorem is the main result of this paper. It is a
corollary of Theorem 13 and Proposition 15, and we state it just for the
stronger case when f ¥HoL f oL . For convenience and ease of reference,
below we explicitly collect all the required assumptions.

Theorem 16. Let L be a pseudodifferential operator of order t ¥ R, for
which K0(L) is finite, let o be a zonal kernel satisfying (5) and (15), and let
f ¥HoL f oL . Suppose that u ¥Ho is a solution of the equation Lu=f, subject
to cu=dc, c ¥ C, where C … (H t)g is a unisolvent set relative to PL, and
dc ¥ R. Then u is uniquely determined. Moreover, there exists a unique func-
tion su of the form (26), solving the collocation problem (27). The order of
approximation of su to u is as follows:

(a) Suppose that there exists a constant Co such that bk(ko) [
Co(1+k)−a−1, for all k \ 0 and some a > 2t. Then there exists a C
independent of h and f such that

||u−su ||t [ Cha−2t ||f||oL f oL .

(b) Suppose that there exists a constant Co such that bk(ko) [ Coe−bk,
for all k \ 0 and some b > 0. Then there exists a C independent of h and f
such that

||u−su ||t [ Ch−2te−b/2h ||f||oL f oL .

Proof. To be able to apply Lemma 14, we must verify that the assump-
tion C … (H t)g is sufficient to guarantee that C …Hg

o . From (14) and (15)
we see that limkQ. (1+lk) t bk(ko)=0, and hence by (8), (1+lk) t [ Ct/ak(o),
ak(o) ] 0, for some Ct > 0. Thus for every v ¥Ho,

||v||2t=C
.

k=0
C
N(k)

l=1
v̂2kl(1+lk)

t [ Ct C
.

k=0
ak(o) ] 0

C
N(k)

l=1

v̂2kl
ak(o)

=Ct ||v||
2
o.

As a consequence, Ho is continuously imbedded in H t and hence C …Hg
o .

By Lemma 14 and the fact that f ¥HoL f oL …HoL , the function u is
uniquely determined.

By Proposition 4, the function sū, L, o ¥ SL, o is uniquely determined by
Eq. (28). Moreover, the term s0 is found by solving the linear system

cs0=dc− csū, L, o, c ¥ C,
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which is invertible by the unisolvency of C. This proves that su=s0+sū, L, o
exists and is unique.

To prove assertion (a), let K be the largest integer such that h [ 1/(2K)
(cf. Lemma 9), so that

1
K+1

[ 2h [
1
K
. (29)

From Theorem 13 we have for any p ¥ Sm−1,

|Lū(p)−Lsū, L, o(p)| [ 3`w ||f||oL f oL C
k > K
L N(k)2 bk(ko)

[ 3`w C2ClCo ||f||oL f oL C
k > K
(1+k)−a−1+2t,

where Cl satisfies (1+lk) t [ Cl(1+k)2t, k \ 0. Bounding the sum of the
series, we have

C
k > K
(1+k)−a−1+2t [ F

.

K
(1+x)−a−1+2t dx

[
1

(a−2t)(K+1)a−2t
[
(2h)a−2t

(a−2t)
,

where the last line uses (29). Combining the above inequalities, we obtain

||Lū−Lsū, L, o ||. [
3`w C2ClCo2a−2t

(a−2t)
ha−2t ||f||oL f oL .

To complete the proof, by Proposition 15, applied with v=u−su ¥Ho …H t

and s=t, there exists a positive constant CL such that

||u−su ||t [ CL ||Lu−Lsu ||0

=CL ||Lū−Lsū, L, o ||L2

[ CL `w ||Lū−Lsū, L, o ||..

The claim of the theorem now follows. Part (b) can be proved along similar
lines. L

It will be instructive to compare Theorem 16 to related work on Hermite
interpolation [15], and on Lagrange interpolation [12, 14]. Some of these
cited papers assume certain continuity of the shape function ko, rather than
conditions on the decay of the bk(ko). To be able to make a comparison,

COLLOCATION WITH ZONAL KERNELS 263



let us link the decay of bk(ko) to the continuity properties of the shape
function ko. If we assume that

bk(ko)=O((k+1)−2n−1− e), (30)

for some e > 0, n \ 0, then it follows from the well-known Bernstein
inequality for trigonometric polynomials that ko p cos ¥ C2n[−p, p]. In
this case Theorem 16 gives an approximation order of h2n+e−2t.

After this work was close to completion, we learned of the work by
Levesley and Luo [15]. Using a different approach, their results show an
approximation order of hn−t, if ko p cos ¥ C2n[−p, p]. This is half the
approximation order that we prove, although we believe that their result
could be doubled by an analogous trick to the one that we employ. There
are other notable differences between our results and those in [15]; we give
our final error bounds for ||u−su ||t rather than |L(u−su)(p)|, p ¥ Sm−1, the
dependence on f is explicit, we cover the more general case of non-invert-
ible operators, and we do not require integer continuity of ko p cos. On the
other hand, the paper [15] does not require that the data points become
dense on the entire sphere, just in a neighborhood of the evaluation
point p.

When we restrict to the special case of Lagrange interpolation (for which
L is the identity operator and t=0), Theorem 16 gives an approximation
order of h2n+e for a shape function satisfying (30). This compares favorably
with the result in [14] that gives an approximation order of hn+e−(m−1)/2,
and also with the paper [12], which demonstrates an approximation order
of hn (since (30) implies, by a derivative formula for Pk in [21],
ko ¥ Cn[1− e, 1], for some 0 < e < 1, which is the required assumption
in [12]).

Assuming decay conditions on the bk(ko), rather than an integer conti-
nuity condition on the shape function ko, is of additional benefit. For
example, consider Wendland’s compactly supported C2n kernels restricted
to S2 (as described in [6]), for which ko p cos ¥ C2n[−p, p]. Assuming
that the order found in [15] can be doubled, one obtains an approximation
order of h2n. However, it seems that the bk(ko) have decay O((1+k)−2n−2),
and hence Theorem 16 gives an approximation order of h2n+1. By using the
decay of the coefficients bk(ko), rather than the continuity of ko, we seem
to have squeezed out an extra power of h.

If the bk(ko) decay exponentially, one can show that ko ¥ C.[−1, 1]. A
consequence of the fast decay is, by part (b) of Theorem 16, that the con-
vergence of the collocation method is spectral, which means that the error
of approximation tends to zero faster than any power of h.

We conclude the paper with a collection of remarks.
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Remark 17. Let us make a few comments about solving the system of
Eqs. (28). Since sū, L, o is written in the form

sū, L, o=C
q ¥ Q
cqLqo( · , q).

Eqs. (28) lead to a linear system with matrix

A=(oL(p, q))p, q ¥ Q.

To ensure that the coefficients cq are uniquely determined, we need that A
is invertible (note that although sū, L, o is unique, the cq may not be). This is
typically achieved by requiring that A is positive definite, which is
determined solely by the positivity properties of the Legendre coefficients
bk(koL )=L

N(k)2 bk(ko). The search for necessary and sufficient conditions
on bk(koL ) that guarantee this is still ongoing (see [6] for a discussion). A
simple sufficient condition for A to be positive definite is that only finitely
many of the coefficients bk(koL ) are zero [24]. This condition is satisfied if
we start with a kernel o, for which bk(ko) > 0, k \ 0, and restrict ourselves
to pseudodifferential operators for which K0(L) is finite. Unfortunately,
the assumption bk(ko) > 0 does not allow the use of initial kernels o that
are conditionally strictly positive definite, for example, multiquadrics [6].
In principle we could permit finitely many of the bk(ko) to be zero and still
guarantee that A is positive definite, but then our assumption f ¥HoL f oL
would be too restrictive. The condition f ¥HoL f oL presumes that f is
missing the harmonics of degree k for which bk(ko)=0 and L N(k) ] 0 (as
well as the harmonics for which L N(k)=0). Typically, this would be an
unreasonable presumption. It is a topic of future research to see if we can
reasonably employ kernels that do not satisfy bk(ko) > 0, k \ 0.

Remark 18. In applications we will usually be given the pseudodif-
ferential operator L of some order t and a driving function f with certain
smoothness, say f ¥H r. An important question is how to choose the
kernel o. There are two competing requirements. The kernel o must be
smooth enough so that (5) and (15) hold, but not so smooth that we no
longer have f ¥HoL f oL . On closer inspection, we can see that these two
requirements are satisfied if there exist positive constants B1 and B2, and
a2 >max{0, 2t} such that

B1(1+k)−1−a1 [ bk(ko) [ B2(1+k)−1−a2,

for all k such that bk(ko) ] 0, where a1=r+2t+1−m. Moreover, when
bk(ko) has the above decay, there exist positive constants B −1 and B −2 such
that

B −1 ||f||r+a2 −a1 [ ||f||oL f oL [ B
−

2 ||f||r.
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Ideally we should choose o as smooth as possible, whilst still satisfying the
requirements of the theorem. Note that in general, the smoother the driving
function f, the smoother we can choose o to be, and the better the pre-
dicted convergence. On the other hand, if a1 < a2, then the function f is
not smooth enough in which case it may not be possible to choose an
appropriate o that would give rise to the approximation order stated in
Theorem 16. However, in that case we may still get half of the approxima-
tion order if f ¥Ho, which would occur whenever r > (m−1)/2−
min{0, 2t}.

Remark 19. If n is a nonnegative integer such that t > n+(m−1)/2,
then using the Sobolev Imbedding Theorem we can rewrite Theorem 16
with the error measured in the norm of Cn(Sm−1) rather than in the
Sobolev norm || · ||t. In particular, if n=0, then we can bound the pointwise
error.

Remark 20. With small adjustments, the results of this paper can be
shown to hold for operators of a more general form than (13). Suppose
that each frequency k \ 0 is associated with an orthogonal matrix
Ok :=(oklj)1 [ l, j [N(k). For any sequence (L N(k))k \ 0 and any u ¥H s, we can
define an operator L by

Lu=C
.

k=0
C
N(k)

l=1
L N(k) ûkl C

N(k)

j=1
okljYkj. (31)

Clearly, if all Ok are the identity matrices, then (31) reduces to (13). An
example of the operator of the form (31) is

L=
“
2n+1

“h2n+1
, n \ 0,

defined on the circle S1, where h is the polar angle. In this case we have
Yk1=cos(kh), Yk2=sin(kh), L N(k)=k2n+1, and

Ok=1 0 (−1)n+1

(−1)n 0
2 , k \ 0.
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Note added in proof. Since the submission of this paper, one of us has improved the error
bounds of Theorem 16 [T. M. Morton, Improved error bounds for solving pseudodifferential
equations on spheres by collocation with zonal kernels, in ‘‘Trends in Approximation Theory’’
(K. Kopotun, T Lyche, and M. Neamtu, Eds.), pp. 317–326, Vanderbilt University Press,
Nashville, TN, 2001].
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